TrPLS: Preserving Privacy in Trajectory Data Publishing by Personalized Local Suppression
نویسندگان
چکیده
Trajectory data are becoming more popular due to the rapid development of mobile devices and the widespread use of location-based services. They often provide useful information that can be used for data mining tasks. However, a trajectory database may contain sensitive attributes, such as disease, job, and salary, which are associated with trajectory data. Hence, improper publishing of the trajectory database can put the privacy of moving objects at risk. Removing identifiers from the trajectory database before the public release, is not effective against privacy attacks, especially, when an adversary uses some partial trajectory information as its background knowledge. The existing approaches for preserving privacy in trajectory data publishing apply the same amount of privacy protection for all moving objects without considering their privacy requirements. The consequence is that some moving objects with high privacy requirements may be offered low privacy protection, and vice versa. In this paper, we address this challenge and present TrPLS, a novel approach for preserving privacy in trajectory data publishing. It combines local suppression with the concept of personalization to achieve the conflicting goals of data utility and data privacy in accordance with the privacy requirements of moving objects. The results of experiments on a trajectory dataset show that TrPLS can be successfully used for preserving personalized privacy in trajectory data publishing. Keywords-trajectory data; privacy preservation; personalized privacy; quasi-identifier; local suppression; information loss; disclosure risk
منابع مشابه
Privacy-preserving trajectory data publishing by local suppression
The pervasiveness of location-aware devices has spawned extensive research in trajectory data mining, resulting in many important real-life applications. Yet, the privacy issue in sharing trajectory data among different parties often creates an obstacle for effective data mining. In this paper, we study the challenges of anonymizing trajectory data: high dimensionality, sparseness, and sequenti...
متن کاملLayered Approach for Personalized Search Engine Logs Privacy Preserving
In this paper we examine the problem of defending privacy for publishing search engine logs. Search engines play a vital role in the navigation through the enormity of the Web. Privacy-preserving data publishing (PPDP) provides techniques and tools for publishing helpful information while preserving data privacy. Recently, PPDP has received significant attention in research communities, and sev...
متن کاملDifferentially Private Real-Time Data Publishing over Infinite Trajectory Streams
Recent emerging mobile and wearable technologies make it easy to collect personal spatiotemporal data such as activity trajectories in daily life. Publishing real-time statistics over trajectory streams produced by crowds of people is expected to be valuable for both academia and business, answering questions such as “How many people are in Kyoto Station now?” However, analyzing these raw data ...
متن کاملA Survey of Privacy Preserving Data Publishing using Generalization and Suppression
Nowadays, information sharing as an indispensable part appears in our vision, bringing about a mass of discussions about methods and techniques of privacy preserving data publishing which are regarded as strong guarantee to avoid information disclosure and protect individuals’ privacy. Recent work focuses on proposing different anonymity algorithms for varying data publishing scenarios to satis...
متن کاملA centralized privacy-preserving framework for online social networks
There are some critical privacy concerns in the current online social networks (OSNs). Users' information is disclosed to different entities that they were not supposed to access. Furthermore, the notion of friendship is inadequate in OSNs since the degree of social relationships between users dynamically changes over the time. Additionally, users may define similar privacy settings for their f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014